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We introduce an agent-based model to investigate the effects of production efficiency (PE) and hot 
field tracing capability (HFTC) on productivity and impact of scientists embedded in a competitive 
research environment. Agents compete to publish and become cited by occupying the nodes of a 
citation network calibrated by real-world citation datasets. Our Monte-Carlo simulations reveal that 
differences in individual performance are strongly related to PE, whereas HFTC alone cannot provide 
sustainable academic careers under intensely competitive conditions. Remarkably, the negative effect of 
high competition levels on productivity can be buffered by elevated research efficiency if simultaneously 
HFTC is sufficiently low.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Considerable effort has been invested in recent years in under-
standing the mechanisms that govern the evolution of productivity 
and impact in science, with some of the major contributions orig-
inating from the physics community [1–11]. As a result, several 
quantitative measures have been proposed over the years to as-
sess productivity and scientific influence of individual researchers, 
research institutions, or whole nations [12–18].

In this fascinating field of science of science, two distinct research 
niches have been built by physicists: a) network-theoretic analyses 
of scientific collaboration and citation networks [19,20], conducted 
largely to understand the topological properties as well as mech-
anisms that lead to the construction of these networks [21,22], 
and b) soft-modeling of large datasets by using standard statisti-
cal physics tools [23,24], mostly to provide theoretical model fits 
to a variety of publication and citation distributions and to classify 
their underlying growth patterns [11,25].

To explain, however, in a more detail, how these distributions 
emerge in the first place, stochastic process (or urn) models have 
been developed [26,27]. Power law distributions, for example, are 
typically explained by a stochastic process involving a growth 
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mechanism and a type of cumulative advantage for those who 
are already rich in publications and citations, ultimately leading 
to the well-known rich-get-richer dynamics [28]. Such mathemati-
cal models have indeed provided much insight into the formation 
of patterns that are typically discovered in bibliometric data [29].

Nevertheless, to go beyond a rather simplistic picture of how 
science works, studying the effects of multiple interacting variables 
on the publication and citation behavior becomes an unavoid-
able necessity which mathematically may be too demanding or 
even analytically intractable, such that agent-based or individual-
based simulation models [30–34] remain as the only alternative 
[29,35]. Moreover, to fully understand the complex dynamics be-
hind scientific publication and citation processes, models need to 
be employed that not only describe the underlying mechanisms 
and their interactions, but that can also generate empirically realis-
tic distributions of publication and citation counts, the evolution of 
their corresponding growth processes over time, and the associated 
topological properties as they are observed in real-world collabo-
ration and citation networks [29].

An important limitation of most previous studies in this area 
is the fact that the usually analyzed datasets did not contain in-
formation about the specific intervening variables, factors that can 
additionally affect the cumulative advantage of individual scientists 
[36,37], such as their individual or team research efficiency, skill 
refinement, variable access to resources, or sudden award-driven 
reputation emergence [3,6,36,38]. This is where generative agent-
based models can help in particular, since they can simulate the 
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relative contributions of many different covariates that may other-
wise be unavailable from real datasets.

In other words, agent-based models can easily produce mul-
tiple local interactions and their various underlying mechanisms 
that are ultimately leading to global-level emergent phenomena 
[39–41], which are thus captured by the model as they gradually 
unfold over the course of individual publication and citation events 
[29]. For decades, these and related advantages of the agent-based 
technology have been studied and successfully applied by physi-
cists in a wide variety of disciplines [35,42].

In the present paper, we employ a multi-agent modeling frame-
work to investigate the effects of production efficiency (PE) and hot 
field tracing capability (HFTC) of individual researchers on their 
productivity and scientific impact in competitive research environ-
ments. At the initialization stage, we calibrated our agent-based 
model by employing two real-world citation datasets: The cita-
tion network of the American Physical Society (APS) journals and 
the condensed matter (Cond-mat) citation network of the arxiv.org
online preprint repository. After calibrating our model with these 
bibliometric datasets, we performed a series of simulation experi-
ments by varying the overall levels of research competition as well 
as the degrees of HFTC and PE of individual agents who competed 
to occupy the nodes of a citation network characterized by a finite 
set of possible research topics.

The two independent variables, PE and HFTC, are generally 
known as relevant career-enhancing strategies which, to our 
knowledge, have not been investigated previously in the context 
of agent-based models, and have generally received very little at-
tention in the studies of publication and citation networks [37]. 
For example, even though research efficiency is known to play an 
important role in the evolution of academic careers, the actual 
magnitude of its effect on productivity and impact as well as its 
relationship to other career-influencing factors are still unknown.

Individual scientists can plausibly work at different efficiency 
levels and can be first-movers [43], by publishing the first paper 
in a relevant discipline (resulting in a great cumulative advantage), 
and/or followers [44], by tracing and extending already established 
works from hot fields in science. Nevertheless, as most other in-
novative and income-driven activities, scientific research is an un-
abating competition for success and reputation among researchers, 
communities, and whole nations, which can have positive [45] but 
also negative consequences [6,46,47].

From our computational experiments, we expected that scien-
tific productivity and impact are influenced by a scientist’s re-
search efficiency level (PE), whereas the ability to trace and follow 
hot research topics (HFTC) alone should not provide sustainable 
academic careers under fiercely competitive conditions. Moreover, 
our simulations should lead to a better understanding of efficiency-
based inter-individual differences in scientific output and influ-
ence, and how these differences can be modified by competition 
and research topic selection.

2. The model

Our agent-based model captures several aspects of behaviors 
that naturally emerge in real-world publication and citation net-
works such as competition, inheritance, directedness, and asymme-
try. Agents (authors or research teams) competitively occupy the 
nodes (publications) of citation networks in which the inheritance 
process is manifested through the spread of citation relationships 
among publications and the gradual activation of nodes along the 
direction of citation relationships, forming thereby directed citation 
links (e.g. paper A cites paper B, but B may not cite A in return). 
As a result, the local asymmetry in citation behavior and the global 
asymmetry in the distribution of publications and citations across 
agents yields a cumulative advantage for authors who have already 
published and were already cited in the past.

Fig. 1. (Color online.) Node selection and exclusive occupation processes in the 
model. In panels (a) and (b), yellow, blue and violet circles represent the occupied 
(“published”), “active” and “inactive” nodes; the black arrows show the citation re-
lationships. The blue, orange, red and green hexagons denote four different agents 
and the blue dashed arrows represent their possible selections of “active” nodes. 
Notice that in this example, two agents (the blue and the orange one) compete for 
the node B and the blue agent finally occupies it. In panel (b), the yellow nodes J 
and L hosting the red dashed hexagons show the previously occupied nodes of the 
red hexagon agent currently occupying the node O. Since this agent cannot find any 
active nodes linked to node O, it has to trace back to its previously published nodes 
(L and J) until it finds an active node; in this example, one such active node is found 
in the node J’s citation network (node K), and K therefore becomes the occupation 
target of the red agent in node O (depicted by the blue dashed arrow). Panel (c) 
depicts the timeline of the “active” node occupation process where the four agents 
shown in panel (a) all select the node D as their target. The blue, orange, red and 
green lines (with the dashed regions) show the length of τ ∗ of the four competing 
agents. t1, t2, t3 and t4, respectively, represent the elapsed time steps of the node 
selection time, and t∗

1 , t∗
2 , t∗

3 and t∗
4 , respectively, are the corresponding expected 

publication times. Since t∗
3 is the earliest one of all expected publication times, the 

red agent occupies the targeted node at this time step and the remaining agents 
have to terminate their procedures. Finally, all agents then again initiate the selec-
tion procedure of new target nodes. These selection and occupation processes are 
also illustrated in panel (d).

Our model runs on two real-world citation networks of aca-
demic publications: The APS and Cond-mat citation networks, with 
a total of 450,084 and 40,421 of published articles (network nodes) 
respectively; the detailed description of these citation networks 
can be found in the Appendix A. The detailed definitions and evo-
lutionary rules of our model are given as follows:

i) Definitions. In our model, each network node can assume one 
out of three possible status types: An “inactive” status indicates 
that the node is currently unoccupied and cannot be selected as a 
research target node of agents, whereas an “active” status signals 
that the unoccupied node can be selected; all occupied nodes have 
the “published” status and cannot be selected again.

First, we randomly choose several citation network nodes to be 
the initial points of the exclusive node occupation process. These 
initial points are the earliest “foundational” papers (for the APS 
dataset) or the papers with longest citation chains (for the Cond-
mat dataset). The detailed algorithm describing the selection of the 
initial points is given in Appendix B.

The initial points of a citation network in our model are set 
as “active”, while others remain as “inactive” nodes. All “active” 
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Fig. 2. (Color online.) Distributions of agents’ publication outputs and citations. Panels (a) and (b) show the APS case distributions of occupied nodes (publications) P (n) and 
the corresponding citation numbers (in-degree) P (K ), for three different degrees of competition α. Panels (c) and (d) are the corresponding distributions for the Cond-mat 
dataset, again for three different competition levels.
nodes, once they are occupied by agents (authors), change their 
status to “published”.

At the initialization stage of each simulation, N agents invade 
the network and compete to occupy its nodes. Each agent i is given 
a value τi describing the typical time needed for completing a 
given research paper (production efficiency), such that higher τ
means lower production efficiency. The values of τi are randomly 
generated and then rounded to integers obeying a Poisson distribu-
tion with the average value τ̄ . These values are then randomly dis-
tributed across agents. Each agent is additionally randomly given a 
value a (a > 0), which is drawn from a Gaussian distribution with 
the expected value 1 and standard deviation 1. The parameter a
describes the ability of an agent to select a currently hot research 
topic, hereafter denoted as hot field tracing capability (HFTC), with 
larger a values standing for an agent’s ability to select and conduct 
research on hot and more important research topics.

ii) Node selection process. Each agent selects one active node 
from its horizon as its future occupation target. At the initial time 
step, the horizon of each agent includes the set of all active nodes. 
At time steps t > 0, the radius of an agent’s horizon includes all ac-
tive nodes which have cited agent’s current node. As illustrated in 
Fig. 1(a), nodes C and D are both in the horizon of the red hexagon 
agent occupying the node A. However, if there are no active nodes 
within an agent’s horizon, the horizon is then enlarged by tracing 
back to the previously selected nodes until there is at least one 
active node in the citations of the published node. The citations 
of this published node then become the elements of the enlarged 
horizon. For example, as shown in Fig. 1(b), the current node O of 
the red hexagon agent has no active citations, so the agent traces 
back to its previously selected nodes and finds there the node J 
which has one active citation (node K); K is then said to be in the 
enlarged horizon of the agent. Importantly, these backtracking and 
target selection processes both occur within a single time step of 
the simulation, irrespective of the length of the total backtracking 
path.
In its horizon, an active node i is selected by an agent j with 
probability

� j→i = (1 + ki)
a j

∑
(1 + k)a j

(1)

where 
∑

runs over all nodes in the horizon of agent j, and ki
is the real-world citation number (the in-degree) of node i. This 
particular node selection example describes the node occupation 
intention of only one agent; however, the case of several agents 
selecting one and the same target node simultaneously is also al-
lowed.

iii) Exclusive occupation. If agent j selects node i at a time 
step t , the expected publication time of node i is given by t∗

i j =
t + τ ∗

j , where τ ∗
j is a randomly generated integer from a Poisson 

distribution with average value τ j . If more than one agent selects 
the same target node, the one with the earliest t∗ will occupy 
(publish) the target node at time step t∗

i j (say agent j). If more 
than one agent has the same ‘earliest’ t∗ , we randomly select one 
of them to finally occupy the node. The status of this newly occu-
pied node then turns into “published”, and all “inactive” citations 
of the “published” node will be set to “active”. All agents who al-
ready selected a given node will repeat the selection procedure 
to select further active nodes. An example of this process is il-
lustrated in Fig. 1(c) and (d), where four agents compete for one 
“active” node and the agent with the earliest expected publication 
time (the red one) wins. The simulation is then further iterated 
until all network nodes turn their status into “published”.

iv) Initial condition settings. In our simulations, the total num-
ber of agents is given by N = αm̄, where α is the parameter reg-
ulating the population density and m̄ is the average publication 
number per year of the employed citation network; for example, 
m̄ = 5048 was the average publication number for the APS case 
from the year 1920, and m̄ = 3663 for the Cond-mat case from 
1995. Since we run our model on two different citation networks 
(with different sizes and different number of publication years cov-
ered), it is better for comparability reasons to use the average 
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Fig. 3. (Color online.) Node occupation rate patterns for different τ and a (the highest occupation rates are displayed in red color, lowest occupation rates in blue). Panel 
(a) shows the APS case and panel (b) depicts the Cond-mat case. Simulations for both cases were run with α = 2.0, and the results are the averages over 10 independent 
simulation runs.
Fig. 4. (Color online.) The average in-degree of occupied nodes as a function of time. 
The APS case is shown in the panel (a), and the Cond-mat case in panel (b). All 
simulations were carried out with α = 2.0, and the results represent the averages 
over 10 independent runs.

publication number per year and hence to employ m̄ when setting 
the number of agents in the model. N = αm̄ is thus a natural way 
for setting the total number of agents when running the model on 
different networks (also see [48,49]). The value of τ̄ is always fixed 
at 100.

The heretofore specified simulation setup indicates that our 
model explicitly combines two types of dynamics. One is
spreading-like process with preferential target selection, in which 
the agents select and occupy the network nodes. The other type of 
dynamics involves the competition between agents targeting the 
same nodes and the resulting exclusive node occupation. For sim-
plicity, competition among agents (and hence the overall degree 
of competition in a research environment) was operationalized in 
our model only via population density, while many other real-
istic covariates such as the availability of funding and research 
opportunities, research position supply-demand balance, or length 
of research contracts, are ignored. Finally, quitting academia was 
not considered in our model; thus, we assume that all agents per-
petually continue to compete for publications and citations in the 
network they occupy, until all network nodes have changed their 
status to “published”.

3. Simulation results

Our simulations revealed two distinct types of output distribu-
tions. More specifically, the distribution of agents’ occupied nodes 
(publications) is Poisson-like (Fig. 2(a) and (c)), whereas agents’ ci-
tations obey log-normal-like distribution (Fig. 2(b) and (d)), which 
is generally in agreement with previous empirical observations 
[50]. The distribution peaks for both investigated cases are shifted 
leftwards in dependence on α.

We were mostly concerned with the publication outputs and 
their impacts in dependence on different production efficiencies 
(parameter τ ) and varying hot-field tracing capabilities (param-
eter a) of agents. In the course of competitive node occupation 
process, agents with small τ would obviously have a higher prob-
ability to occupy the designated target nodes. Since agents with 
higher a are more likely to choose highly-cited nodes, greater com-
petition levels should occur in these node areas. Thus, it is rather 
trivial that a fraction of agents with both smaller τ and higher a
would clearly generate more outputs with greater impacts. How-
ever, the question remains who will have a greater potential to 
attain higher publication outputs and their corresponding impacts 
if possessing only a single advantage (i.e. either high a or low τ ), 
and what is the actual magnitude of the effects of these advan-
tages on productivity and influence.

To address this question, we investigate the patterns of the 
node occupation rate ρ for agents with different τ and a under 
varying levels of competition α. Here, the node occupation rate ρ
of an agent is defined as ρ = n/ns , where n is the total number of 
occupied nodes in the whole evolution process and ns is the to-
tal number of nodes selected by an agent. As shown in Fig. 3, an 
agent’s node occupation rate is mainly influenced by the produc-
tion efficiency τ .

Moreover, differences between the APS and the Cond-mat cases 
are visible: Agents with a larger a have higher node occupation 
rates in the APS case relative to the Cond-mat case (see Fig. 3). Fur-
thermore, relative to the Cond-mat case, the node occupation rate 
in the APS case remains relatively high or moderate for a wider 
range of (also lower) production efficiencies τ . These differences 
could be of relevance to the comparison of detailed structures 
of the two studied citation networks, and could be due to sev-
eral factors. For example, such differences could be attributed to 
a somewhat stronger heterogeneity of the in-degree distribution in 
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Fig. 5. (Color online.) Patterns of agents’ publication outputs n, citations K , and Hirsch indices (h-index) H for different τ and a. The left, middle, and right columns, 
respectively, show the average number of occupied nodes 〈n〉 (publication number), the logarithm of the average in-degree of occupied nodes log〈K 〉 (number of cited 
records), and the average h-index 〈H〉. The three upper panels ((a)–(c)) correspond to the simulations calibrated with the APS citation network, whereas the bottom panels 
((d)–(f)) show the Cond-mat case. All simulations were carried out with the fixed α = 2.0, and the results represent the averages over 10 independent simulations runs.
the Cond-mat citation network relative to the APS case (see Fig. A.7
in the Appendix).

Importantly, Fig. 3 also clearly shows that the effect of a on 
the occupation rate ρ is generally weaker than that of τ . To ex-
plain this somewhat unexpected result, we studied the average 
in-degree (citations) of newly occupied nodes (publications) as a 
function of time. As shown in Fig. 4, since highly-cited paper nodes 
usually attract a greater number of agents (authors), they are oc-
cupied much earlier in evolutionary time than other ‘less-cited’ 
nodes. The competition for highly-cited papers is obviously much 
more pronounced, and the competition outcome is consequentially 
mainly decided by the efficiency level of agents.

We used three measures to calculate agents’ productivity and 
impact in the model: The total number of publications n, total ci-
tation records K , and the corresponding Hirsch index H . The calcu-
lation of H in our model, that is analogous to the original h-index, 
is described in Appendix C. Since publications in our model are 
produced by the occupation of network nodes, the occupation rate 
ρ directly affects an agent’s productivity. Consequentially, the pro-
ductivity patterns (Fig. 5) show a similar behavior as those ob-
served for the node occupation (see Fig. 3). Moreover, the total 
number of occupied nodes (total number of publications) for each 
agent mainly depends upon the value of τ (see the patterns shown 
in Fig. 5(a) and (d)).

Even though agents with a larger a have a higher probability 
to select nodes with greater in-degrees (i.e. highly-cited publica-
tions), the effect of τ on an occupied node’s in-degree K (to-
tal citation records) is still clearly evident, as shown in Fig. 5(b) 
and (e), indicating that agents with both high degrees of research 
efficiency and research direction selectivity are more likely to ob-
tain stronger citation records. Interestingly enough, the patterns of 
agents’ H-indices display the mixed features of both other pattern 
types separately shown for n and K (see Fig. 5(c) and (f)), but 
again, they reveal that τ plays the main role also in determining 
the value of H of an individual agent.

For further clarity, the effects of τ and a on the measures n, K , 
and H are plotted functionally for different degrees of competition 
(controlled by the parameter α). We calculate 〈n〉, 〈K 〉 and 〈H〉 for 
different τ , a and α, where the operator 〈〉 denotes the value aver-
aged over the agents with the same α, same τ and the same range 
of a. As shown in Fig. 6(a) and (g), 〈n〉 as a function of τ rapidly 
decreases with an increasing τ (i.e. lower efficiency), especially for 
the agents with better research topic insights (a > 2) who select 
hot research topics and exhibit an intense competition in seizing 
the nodes with high in-degrees. This decreasing function is steeper 
in the Cond-mat citation network case relative to the APS case.

In contrast, there is only a slight and insignificant decrease of 
〈n〉 with an increasing a (Fig. 6(d) and (j)), indicating that HFTC 
cannot strongly affect the total number of publications. Remark-
ably, we can see in the APS case (Fig. 6(a)) that at a very high 
efficiency level (i.e. the lowest values of τ ), the typically nega-
tive effect of high competition α on 〈n〉 can be buffered if HFTC 
is sufficiently low (i.e. a ≤ 2), such that agents can attain very high 
productivity levels even under fiercely competitive conditions.

The effects of the studied variables on the total citation records 
〈K 〉 show some pertinent differences. As shown in Fig. 6(b), (e), 
(h) and (k), the pattern of the effects of τ and a on 〈K 〉 is simi-
lar, since a directly affects agents’ selection preferences for target 
node citation numbers. The calculated H-index also mainly de-
pends upon the efficiency level τ (it significantly decreases with 
lower efficiency, i.e. higher τ ), while it only slightly increases with 
growing a, with stronger fluctuations observed in the simulated 
Cond-mat case (Fig. 6(c), (f), (i) and (l)).

The curves corresponding to different values of α in the APS 
case are almost parallel over much of the τ range with rather 
small fluctuations at very low and very high efficiency levels 
(Fig. 6(c)), indicating here that the global intensity of competi-
tion actually has a rather trivial effect on 〈H〉, without interactions 
with other variables. Under conditions with higher α, due to the 
more intense competition, some agents would have to select more 
marginally influential nodes because the highly-cited ones are usu-
ally already occupied earlier in evolutionary time, and thus the im-
pact of the intense competition in highly-cited nodes is weakened.

In summary, we can conclude that an agent’s production effi-
ciency plays the dominant role in determining both its scientific 
output and impact measures. Thus, even slight reductions of the 
total paper completion time could significantly boost agents’ per-
formance, implying that a fast completion of a given research as-
signment is of great importance to all involved collaborators.
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Fig. 6. (Color online.) Average productivity and impact as a function of τ , a, and α. Panels in the left, middle and right columns are the average numbers of occupied nodes 
〈n〉, the average in-degree of occupied nodes 〈K 〉, and the average H-index 〈H〉, respectively. The upper six panels (a)–(f) show the APS citation network case, and the bottom 
panels (g)–(l) correspond to the Cond-mat case.
4. Discussion

In this paper, we have studied the effects of research efficiency 
and research topic selectivity on scientific productivity and impact 
of individual agents embedded in variously competitive research 
environments. To this effect, we employed an agent-based com-
putational model that was calibrated by using publication and ci-
tation records of the American Physical Society journals and the 
condensed matter (Cond-mat) citation network of the arxiv.org
preprint repository. In our model, agents with different research 
efficiencies and research topic selection capabilities invaded the 
initially calibrated artificial citation network, and then iteratively 
competed to occupy its nodes in order to become increasingly pub-
lished and cited agent-authors.

Our simulation experiments revealed that the work efficiency 
strongly affects agents’ academic outputs and impacts under a 
wide variety of conditions. Research direction selectivity (HFTC), 
on the other hand, plays a less important role, since our find-
ings indicate that a selection of hot research topics alone cannot 
provide sustainable academic careers under intensely competitive 
conditions. Remarkably, we observed that the negative effect of 
competition on productivity can be buffered by higher research ef-
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ficiency if simultaneously HFTC is sufficiently low, indicating that 
agents with different HFTC levels do not seem to equally benefit 
from work efficiency in a highly competitive environment.

Overall, these findings suggest that even scientists without per-
ceptive insights into which research direction to choose would 
still be able to attain high-level career achievements by adhering 
strongly to hard but efficient work. These findings are additionally 
corroborated by a recent empirical report [43], suggesting that to 
become influential, it may be much better for a scientist to pro-
duce the first instead of the best paper in a given research area. 
However, in the ever-growing competition in academia, to be the 
first-mover it is necessary not only to be creative and have in-
teresting novel ideas, but also to be able to publish on time and 
before the other competing peers.

In our study, we addressed three widely and perhaps most 
frequently employed measures of scientific productivity and im-
pact: Total number of publications, total citation counts, and the 
well-known h-index, which combines productivity and impact of 
a scientist into a single metric [12]. However, we note that even 
though such indices have progressively been used to compare in-
dividual scientists [51], e.g. when assessing their grant or job appli-
cations, it has increasingly been advised against an unreflexive use 
of such quantitative measures as the only tool for judging scien-
tific achievement [52,53]. Indeed, consensus has yet to be achieved 
on the extent to which a single measure should be administered 
to evaluate the actual quality of science and to influence pol-
icy decisions [54]. Consequentially, as the debate around science 
performance indicators and their wide-spread usage continues to 
thrive, much further research [55] and critical reflection [56] will 
be necessary to arrive at meaningful and cross-disciplinarily valid 
[7] conclusions.

In a sense, our model is similar to the epidemic spreading pro-
cess [57] on directed weighted networks, but the difference is 
that all agents in our model are always active and can jump to 
nonadjacent nodes in some cases (e.g. in the backtracking pro-
cess), mimicking to some extent repeated medium- and long-range 
travels which are also important in the study of epidemics [48]. 
However, differently from a typical spreading model, we do not 
include the reproduction-like process of agents whose number 
thus remains fixed throughout the simulation. Moreover, tradi-
tional spreading models usually do not consider multiple types of 
pathogens, whereas in our model, each agent can be interpreted 
as an independent ‘pathogen’ type. Importantly, in standard mod-
els of contagion transmission, an infected node can typically infect 
multiple neighbors synchronously. In contrast, agents in our model 
can select and occupy network nodes only asynchronously, one by 
one.

For simplicity, we only kept the very few and basic elements 
of a real-world academic competition process in our model while 
excluding several important factors that can also affect publication 
and citation behaviors, such as team work efficiency, the availabil-
ity of financial and human capital resources, changes in individual 
reputation, scientists’ relocations, or sudden shifts in institutional 
research policy [36,37]. Moreover, other aspects of research effi-
ciency such as its sustainability over longer periods of time (rela-
tive to shorter, burst-like productivity phases), or the effects of the 
number of topics covered in the produced work and the associated 
degree of interdisciplinarity of a paper, rightfully deserve special 
attention in subsequent studies. These factors will be considered 
in more realistic future modifications of the present model.

In addition, since earlier theoretical and empirical reports were 
typically limited to the analysis of only modestly large datasets 
(and usually only within a single discipline), it remains a grand 
challenge for further research to employ large-scale agent-based 
models [58–60] and calibrate them with much greater amounts of 
data in order to enable comparisons with real-world citation net-
works originating from many different scientific disciplines. Simi-
larly to what is envisioned in the prestigious Human Brain Project 
[61], which employs exascale computer simulations of the human 
brain, investing related efforts in the area of scientometrics could 
eventually lead to the development of predictive large-scale agent-
based models that would enable us to peek into the much far-
ther stages of the evolution of science. Such models could help us 
gain a multi-level trans-disciplinary understanding of how science 
works and how its future may look like in the world of the ever 
growing scientific [37] and economic inequality [62].

Future extensions of our model could also contain algorithms 
with more explicitly detailed evolutionary features, such as the 
population of reproducing authors who continuously leave and en-
ter academia, mutations of research strategies, and various selec-
tion pressures on working agent-scientists. Furthermore, to make 
the agent-based publication and citation process models more re-
alistic, one could also include sophisticated rules for collaborator 
and research topic selection, performance measures beyond mere 
publication and citation numbers (e.g. recency, paper length, or 
number of coauthors), the artificial peer review process, and spe-
cial reviewer selection rules [29].

In summary, we proposed an agent-based modeling framework 
to investigate two factors affecting academic outputs of individ-
ual researchers – production efficiency and hot field tracing ca-
pability. The majority of researchers is knowingly aware of the 
significance of production efficiency, consequentially making great 
efforts in their daily research works; however, they still have to 
face many extra tasks and administrative duties causing frequent 
project completion delays and efficiency shocks. Our results high-
light the importance of maintaining and optimizing the work ef-
ficiency in academia, such that reducing scientists’ efficiency gaps 
could have profound effects on boosting their academic success.
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Appendix A. Data description

Two datasets of real-world citation networks are used in 
our model: The data of APS journals (available online: https://
publish.aps.org/datasets) and the Cond-mat dataset of arxiv.org
preprint repository (available online: http :/ /www-personal .umich .
edu /~mejn /netdata/).

The APS dataset covers all publications in Physical Review, Phys-
ical Review Letters, and Reviews of Modern Physics. It includes 
the information on each paper’s date of acceptance, publication 
time, author information, citations, citation relationships, etc. The 
dataset is comprised of a total of 450,084 articles with 4,692,056 
citation relationships from 1893 to 2009. The distributions of de-
gree, in-degree and out-degree of citation relationships are shown 
in the top panel of Fig. A.7.

Cond-mat dataset contains all preprints uploaded between Jan-
uary 1, 1995, and March 31, 2005, to the condensed matter elec-
tronic print archive arxiv.org, containing a total of 40,421 papers 
and 175,692 citations. The citation network degree distributions of 
the Cond-mat dataset are shown in the bottom panel of Fig. A.7.

Appendix B. Initialization stage

At the initialization stage of our model, several nodes were set 
as “active” in the first time step t = 0. For the model calibration 

https://publish.aps.org/datasets
https://publish.aps.org/datasets
http://arxiv.org
http://www-personal.umich.edu/~mejn/netdata/
http://arxiv.org
http://www-personal.umich.edu/~mejn/netdata/
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Fig. A.7. (Color online.) Degree distributions of the two real-world citation networks: 
(a) APS and (b) Cond-mat.

with the APS dataset, we selected the papers published before 
1920 (a total of 809 articles) and their citations to represent the 
initially active nodes.

For the model calibration with the Cond-mat dataset, since it 
does not include temporal information of articles, the initial active 
nodes were selected in accordance with the following two condi-
tions: The node is in the head of a citation chain, i.e. it does not 
cite any papers in the dataset, and the total length of the chain is 
longer than 20 papers (max. 28). Under these conditions, 124 arti-
cles in Cond-mat dataset were selected as the initially active nodes 
in our simulated network.

Appendix C. Calculation of H-index

The h-index is a widely employed measure for quantification of 
a scientist’s academic performance [12]. This index can be defined 
in the following way: An individual scientist has an index H if H of 
her/his Np published articles have at least H citations each, while 
the rest of (Np − H) articles have no more than H citations each 
[12]. The value H is then the h-index of a scientist.

In our model, the in-degrees (i.e. real-world citation numbers) 
of an agent’s occupied nodes are treated as citations of agent’s pa-
pers, and thus in the calculation of the agent’s h-index we firstly 
rank all of its occupied nodes in a descending order of their in-
degree. We then find a rank H of an agent by satisfying the fol-
lowing conditions: The in-degree of an occupied node with rank H
satisfies kin

H ≥ H , and for the node with rank H + 1, its in-degree 
kin

H+1 < H + 1. This value H is then the h-index analogue of an 
agent in our model.
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