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ABSTRACT 
 
Addressing shortcut reliance and limited contextual understanding 
in cross-modal reasoning, we introduce a zero-shot omni-modal 
reasoning component inspired by human-like cognition, realized as 
a plug-and-play intent-sketch pipeline with three serial modules: 
Intent Perceiver, Policy Generator and Strategy Selector, that 
models an understand-plan-select cognitive process. By producing 
and filtering lightweight intent sketch strategies to guide reasoning, 
the method requires no parameter fine-tuning and enables cross-
model transfer through in-context engineering. An information-
theoretic analysis demonstrates that this process reduces conditional 
entropy and improves information utilization efficiency. Extensive 
experiments on IntentBench, WorldSense, and Daily-Omni confirm 
the method’s generality and robustness: the full three-module design 
consistently outperforms strong baselines across diverse reasoning 
engines and pipeline settings, with maximum gains of +9.51 pp and 
a relative improvement of 20.04%. These results demonstrate the 
practical value and portability of the proposed intent sketch 
reasoning component for zero-shot omni-modal reasoning. 
 

Index Terms—LLM, Omni-Modal, Intent Sketch, Information 
Entropy 
 

 
Fig 1: Relative Percentage Improvements over Baselines by the 
Proposed Method on IntentBench, WorldSense, and Daily-Omni 

 
1. INTRODUCTION 

                       
With GPT-4 introducing visual inputs in 2023, LLMs began parsing 
images and performing visual reasoning [1], spurring rapid progress 
in building and applying multimodal models [2], [3]. Tasks like 
video question answering demand stronger dynamic-scene 
comprehension and temporal reasoning [4], motivating unified 
alignment and fusion of vision, language, and audio to enhance 
cross-modal reasoning [5]. As a result, models are expanding from 
images to video and audio toward “audiovisual omnipotent” 
architectures that enrich human-computer interaction [6]. 

However, even with massive parameters and multimodal pre-
training, they continue to face challenges such as insufficient global 
contextual understanding and “shortcut” reasoning in complex tasks 
[7]. Models often over-rely on local or single-modality cues while 

overlooking critical cross-modal information, leading to outputs that 
deviate from human intent [8]. Even with Chain-of-Thought 
prompts, multimodal LLMs remain weak at multi-step cross-modal 
reasoning [9]. Constructing reasoning chains via reinforcement 
learning may cause models to acquire “shortcut” strategies, thereby 
reducing generalization [10]. These phenomena indicate that relying 
solely on the model’s inherent reasoning ability and simple prompts 
is still insufficient to align the model with human intent. 

To address this, recent work injects “intent” as a mediator 
between user queries and cross-modal evidence: some introduce 
explicit intent labels or scene purposes to constrain answers and 
reasoning scope [7]; others use instruction tuning and templated 
prompts to declare desired behavior and implicitly align goals [11]; 
still others, “intent-conditioned” retrieval-reasoning pipelines or 
agents drive evidence selection and reasoning steps by current intent 
[12]; and text-guided fusion aids multimodal intent understanding 
[13]. Increasingly, temporal and event structures in audio-video are 
exploited to infer latent intent and filter irrelevant cues [14], [15]. 
However, these approaches often depend on dense annotation and 
task-specific training, hindering zero-shot transfer [7], [16], or treat 
intent as static labels or prompt fragments without externalizing it 
into generable, assessable, and selectable strategies—limiting 
suppression of shortcuts and local biases [8], [11]. 

Motivated by recent “sketches of thought” approaches: the 
Sketch-of-Thought framework [17] maintains reasoning accuracy 
while reducing verbose intermediate reasoning, Machine Mental 
Imagery [18] injects latent visual “imagination” to aid reasoning in 
complex scenes. We propose a zero-shot omni-modal reasoning 
component inspired by human-like cognition. The component 
decomposes context through a plug-and-play intent-sketch pipeline: 
Intent Perceiver, Policy Generator and Strategy Selector, which 
infer textual intent from video and audio, generate candidate policies, 
and select an optimal strategy; a reasoning LLM then conditions on 
the selected strategy to produce the final answer via prompt 
composition. On challenging benchmarks—IntentBench [7], 
WorldSense [14] and Daily-Omni [15], using HumanOmniV2, 
Qwen2.5-Omni, Qwen2.5-VL, respectively, serving as a unified 
comparison. Our method surpasses the base model on all 
benchmarks (highest relative increase: 20.04%). Meanwhile, in 
terms of “effectiveness vs. cost” compared with training-based 
methods, we maintain zero training overhead and low latency, 
resulting in better overall cost and deployment timelines.  

The main contributions: (1) a zero-shot omni-modal reasoning 
component that contains a plug-and-play intent-sketch pipeline, 
deliver immediate accuracy gains and cross-model generality; (2) an 
information-entropy analysis that explains how strategy prompts 
reduce decision uncertainty; (3) present comprehensive omni-modal 
experiments, including ablations and reasoning-engine swaps, that 
validate the effectiveness and practicality of in-context strategy 
prompting on the three benchmarks above. 



 

 
Fig 2: zero-shot omni-modal reasoning component: plug-and-play 
intent-sketch pipeline and information-entropy analysis 

 
2. METHOD 

 
The plug-and-play intent-sketch pipeline contains three serial 
modules: Intent Perceiver, Policy Generator and Strategy Selector, 
operating on omni-modal input 𝑋 = (𝑉, 𝐴, 𝑄) where 𝑉 is video, 𝐴 
is audio, and 𝑄 is the textual query. The Intent Perceiver maps 𝑋 to 
𝑍!" to reduce generating uncertainty; the Policy Generator yields 𝑁 
semantically diverse policies; the Strategy Selector applies extra 
conditioning 𝐶, select 𝑆∗ to drive the final reasoning. This design 
mirrors the human routine of understand-plan-select, yielding a 
clearer reasoning trajectory and improved answer generation. 
2.1. Intent Perceiver: Intent Representation for Strategy 
Generation 

Given 𝑋 = (𝑉, 𝐴, 𝑄) , the module outputs an intent 
representation 𝑍$% = 𝑓(𝑋)  that fuses cross-modal cues with the 
query. From an information-theoretic view, using 𝑍$% to condition 
strategy generation provides nonnegative information gain: 

𝐼	0𝑆; (𝑄, 𝑍$%)2 − 𝐼	(𝑆; 𝑄) = 𝐼	(𝑆; 𝑍$% ∣ 𝑄) ≥ 0 (1) 
equivalently 𝐻(𝑆 ∣ 𝑄, 𝑍$%) ≤ 𝐻(𝑆 ∣ 𝑄) . By focusing on 

answer-relevant omni-modal evidence, 𝑍$%  reduces ambiguity at 
problem understanding and effectively lowers the initial conditional 
uncertainty 𝐻(𝑌 ∣ 𝑋). 
2.2. Policy Generator: Omni-Policy Generation Based on 
Semantic Entropy 

Conditioned on (𝑄, 𝑍$%), a frozen LLM (prompted as a policy 
provider) generates 𝑁  candidate sketches {𝑆&, … , 𝑆'}  that specify 
reasoning lines without producing the answer. Let ℳ  denote 
semantic equivalence classes over policies and 𝑝(𝑚 ∣ 𝑄, 𝑍$%) the 
posterior over classes. We define the semantic entropy 
𝐻sem(𝑆 ∣ 𝑄, 𝑍$%) = − A  

(∈ℳ

 𝑝(𝑚 ∣ 𝑄, 𝑍$%)𝑙𝑜𝑔	 𝑝(𝑚 ∣ 𝑄, 𝑍$%) (2) 

and the gain brought by intent conditioning: 
𝐼(𝑆; 𝑍$% ∣ 𝑄) = 𝐻sem(𝑆 ∣ 𝑄) − 𝐻sem(𝑆 ∣ 𝑄, 𝑍$%) ≥ 0 (3) 

To balance single-sketch clarity and set-level coverage, for 
each candidate 𝑆+ let 𝑝+(𝑚) = 𝑝(𝑚 ∣ 𝑄, 𝑍$%; 𝑆+) and 

𝐻+ = −A 
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 𝐻sem(𝑆+ ∣ 𝑄, 𝑍$%) + 𝛾	𝐷𝑖𝑣(𝑆&, … , 𝑆')				(5)  

𝛼, 𝛾 > 0 are weights, and Div(⋅) can be defined via pairwise 
distances in semantic similarity between candidates to encourage 
complementary policies with different emphases, such as “evidence-
first,” “temporal/causal-first,” or “cross-modal-alignment-first”. 

2.3. Strategy Selector: Strategy Selection Based on 
Minimum Conditional Entropy/Bayesian Risk 

Given {𝑆&, … , 𝑆'}, the model (prompted as a strategy evaluator) 
selects 𝑆∗ based on the 𝑋 and task-specific conditioning 𝐶 to align 
the choice with real-world constraints. Let 𝑝0(𝑌 ∣ 𝑋, 𝑆+ , 𝐶) be the 
answer posterior under 𝑆+  with extra conditioning 𝐶 . In 
implementation, we obtain 𝑝0(𝑌 ∣ 𝑋, 𝑆+ , 𝐶) by prompting the LLM 
with (𝑋, 𝑆+ , 𝐶) and computing answer-slot likelihoods, so the added 
𝐶 induces strategy-dependent posteriors. Under 0-1 loss: 
𝑆∗ = 𝑎𝑟𝑔	𝑚𝑖𝑛

+
 	𝑅1	3	&(𝑆+) = 𝑎𝑟𝑔	𝑚𝑎𝑥

+
 	𝑚𝑎𝑥

4
 	𝑝0(𝑌 ∣ 𝑋, 𝑆+ , 𝐶) (6) 

Selection maximizes information gain: 
𝐼𝐺(𝑌; 𝑆+ ∣ 𝑋) = 𝐻0(𝑌 ∣ 𝑋) − 𝐻0(𝑌 ∣ 𝑋, 𝑆+ , 𝐶) (7) 

𝑆∗ = 𝑎𝑟𝑔	𝑚𝑎𝑥
+
 𝐼𝐺(𝑌; 𝑆+ ∣ 𝑋) = 𝑎𝑟𝑔	𝑚𝑖𝑛

+
 𝐻0(𝑌 ∣ 𝑋, 𝑆+ , 𝐶) (8) 

Because candidates are complementary: 

𝐻0(𝑌 ∣ 𝑋, 𝑆∗) = 𝑚𝑖𝑛
+
 𝐻0(𝑌 ∣ 𝑋, 𝑆+) ≤

1
𝑁A 

+

 𝐻0(𝑌 ∣ 𝑋, 𝑆+ , 𝐶) (9) 

In practice, exploring a diverse and complementary set of 
strategies increases the chance that at least one  𝑆+ substantially 
reduces uncertainty, making lower overall uncertainty more likely. 
This implies a lower expected conditional entropy—via a Fano-type 
bound—a lower achievable error bound; in particular, reducing 
𝐻0(𝑌 ∣ 𝑋, 𝑆∗, 𝐶) lowers an upper bound on the minimum error rate 
under 0-1 loss. Consequently, subsequent reasoning based on 𝑆∗ 
integrates omni-modal evidence along a path of higher confidence, 
enhancing the reliability of answer generation. 
2.4. A Unified Information-Theoretic Framework of 
Uncertainty Reduction 

This section formalizes our pipeline as an information-theoretic 
mechanism for uncertainty reduction. We begin with the basic 
theorem of conditioning: 

𝐻(𝑋 ∣ 𝑌) 	≤ 	𝐻(𝑋) (10) 
Treating the strategy 𝑆∗  as an observable planning variable, 

𝐶	denotes the extra task conditioning used to choose 𝑆∗, we model 
the answer posterior as 𝑝(𝑌 ∣ 𝑋, 𝐼, 𝑆, 𝐶) . Formally, by the 
conditioning reduces entropy theorem, we obtain the following 
monotone contraction chain: 
𝐻(𝑌 ∣ 𝑋 ) ≥ 𝐻(𝑌 ∣ 𝑋, 𝐼 ) ≥ 𝐻(𝑌 ∣ 𝑋, 𝐼, 𝑆 ) ≥ 𝐻(𝑌 ∣ 𝑋, 𝐼, 𝑆, 𝐶)(11) 

This captures how intent 𝐼 , the multi-policy set 𝑆 , and the 
selected strategy 𝑆∗progressively reduce the conditional uncertainty 
of 𝑌. 

From the perspective of the Data Processing Inequality (DPI), 
if 𝑋 → 𝐼 → 	𝑆 → 𝑆∗ forms a Markov chain, then we have: 

𝐼(𝑋; 𝑆∗) < 𝐼(𝑋; 𝑆) < 𝐼(𝑋; 𝐼) < 𝐼(𝑋; 𝑋) (12) 
This implies that any representation derived from 𝑋 must lose 

some information about 𝑋 itself. However, in inference, we do not 
replace 𝑋  with 𝑆∗ ; instead, we use 𝑆∗  as auxiliary information 
conditioned on 𝑋: 

𝐻(𝑌 ∣ 𝑋, 𝑆∗) < 𝐻(𝑌 ∣ 𝑋) (13) 
with strict inequality when 𝐼(𝑌; 𝑆∗ ∣ 𝑋) > 0. This reduction 

occurs because 𝑆∗, although derived from 𝑋, is constructed through 
a process that incorporates task-specific guidance (e.g., evidence-
first, causal-first, cross-modal alignment). These human-informed 
design choices embed additional relevant cues into 𝑆∗, enabling it to 
provide new information about 𝑌 that is not directly accessible from 
𝑋  alone. Thus, conditioning on 𝑆∗  enhances prediction accuracy, 
leading to the entropy reduction in (13) and contributing to the 
overall uncertainty contraction in (11). 
 

Algorithm 1 Pseudocode for intent sketch reasoning 
component 



 

Input 𝑋 = (𝑉, 𝐴, 𝑄), 𝑘; Output 𝑦̂, 𝑅 
𝐼 ← IntentPerceiver(𝑋)  
𝑆 ← PolicyGenerator(𝐼, 𝑄, 𝑘) = {𝑠&, … , 𝑠5}  

function POSTERIOR_AND_ENTROPY(𝑋, 𝑠) 
𝑃̂4 ← ReasoningEngine.posterior(𝑌 ∣ 𝑋, 𝑠)		
𝐻̂ ← Entropy(𝑃̂4)		
return	(𝑃̂4, 𝐻̂)		

best_H ← +∞; 	best_s ← ∅; 	post_best ← ∅			
for each 𝑠 in	𝑆 do 

𝑃̂4,H ← POSTERIOR_AND_ENTROPY(𝑋, 𝑠)  
if H < best_H:  

best_H ← H;  best_s ← 𝑠;  post_best ← 𝑃̂4 
end for 
𝑠∗ ← best_s  
(𝑅, 𝑦̂) ← ReasoningEngine.solve_with_strategy(𝑋, 𝑠∗) 
return 𝑦̂, 𝑅 

 
3. EXPERIMENTS AND RESULTS 

 
3.1. Experimental Settings 
We evaluate the method on three omni-modal reasoning 
benchmarks: IntentBench (omni-intent understanding), WorldSense 
(audio-video collaborative analysis), and Daily-Omni (daily-life 
scenarios). Accuracy (%) is the metric. We compare baseline models 
(no strategy prompts) with our approach that adds three plug-in 
modules—Intent Perceiver, Policy Generator, and Strategy 
Selector—whose output is passed to the reasoning engine (Table I). 

All experiments follow a zero-shot setting (no fine-tuning; 
zero-shot prompts only). We use three reasoning engines: 
HumanOmniV2, Qwen2.5-Omni, and Qwen2.5-VL. The pipeline 
modules are instantiated with four pretrained LLMs: closed-source 
GPT-4o and Doubao-Seed-1.6, and open-source GLM-4.5 and 
Qwen3. To quantify module contributions, we conduct ablations 
(Table II). Each setting is evaluated over the Cartesian product of 
the four pipeline LMs and the three reasoning engines, with all other 
hyperparameters and inference configurations held constant for fair 
comparison. Through these combinations we measure the overall 
gain of the integrated system and the contribution of each module. 
 

TABLE I 
Summary of Models, Roles, and Scales (“a/b” denotes total / 

activated parameters, for Mixture-of-Experts models) 

Model Role Parameter 
Scale 

HumanOmniV2[7] Reasoning Engine 7B 
Qwen2.5-Omni Reasoning Engine 7B 

Qwen2.5-VL Reasoning Engine 7B 

GPT-4o Policy Generator 
/Strategy Selector 

Large Closed-
Source Model  

GLM-4.5 Policy Generator 
/Strategy Selector 355B/32B 

Doubao-Seed-1.6 Policy Generator 
/Strategy Selector 

Large Closed-
Source Model 

Qwen3 Policy Generator 
/Strategy Selector 235B/22B 

Qwen2.5-VL-32B Intent Perceiver 32B 

GLM-4.5V Intent Perceiver 106B/12B 
 

TABLE II 
Experimental Configurations: Three-Module Settings 

Exp ID Intent Perceiver Policy 
Generation 

Strategy 
Selection 

CG_Qwen Qwen2.5-VL-32B 3 On 
CG_GLM GLM-4.5V 3 On 

Abl_NI No 3 On 
Abl_SP Qwen2.5-VL-32B 1 On  

BaseLine No No No 
Note: CG_Qwen: Full, use Qwen as Intent model; CG_GLM: Full, 
use GLM as Intent model; Abl_NI: Remove the Intent module; 
Abl_SP: Change policy generation to single policy; BaseLine: No 
front-end pipeline. 
3.2. Main Results 
Table III report detailed results on three benchmarks, respectively. 
The best results are sometimes achieved by CG_Qwen and 
sometimes by the CG_GLM, but both surpass “no intent” (Abl_NI) 
and “single policy” (Abl_SP). In addition, both Abl_NI and Abl_SP 
outperform the baseline, confirming the effectiveness of each 
module. the maximum gain corresponds to +9.51 pp (a 20.04% 
relative improvement). Importantly, the three-module scheme 
consistently outperforms the corresponding baselines across all 
combinations of the four pipelines and three reasoning engines, 
regardless of whether the pipeline LLMs are closed-source or open-
source, this indicates that our method offers strong portability and 
plug-and-play characteristics.

 
TABLE III 

Accuracy (%) of different reasoning models combined with Pipeline module models on IntentBench (IN), WorldSense (WO) and Daily-
Omni (DA) datasets. 

Pipeline 
Reasoning 

Model 
(Baseline) 

CG_Qwen CG_GLM Abl_NI Abl_SP 

IN WO DA IN WO DA IN WO DA IN WO DA 

GPT-4o Human 
OmniV2 

(IN:69.33)  
(WO:47.1) 
(DA:58.47) 

[7] 

70.86 48.8 60.23 70.47 48.55 59.9 70.45 47.79 58.56 70.09 48.14 59.31 
GLM-4.5 71.07 48.17 62.74 70.87 48.7 61.24 70.51 48.01 59.31 70.27 47.89 60.74 
Doubao-
Seed-1.6 70.92 48.23 62.66 70.72 48.2 61.07 70.06 48.14 59.9 69.74 47.64 60.9 

Qwen3 71.18 48.36 62.49 70.9 48.36 61.32 70.82 48.3 61.24 69.96 47.92 60.15 



 

GPT-4o Qwen2.5-
Omni 

(IN:64.2)  
(WO:45.4) 
(DA:47.45) 

[7] 

65.95 47.13 55.56 66.07 47.67 55.64 65.82 47.01 55.47 64.99 46.75 50.38 

GLM-4.5 65.51 47.57 54.05 65.86 47.38 54.22 65.31 47.23 53.38 65.31 46.31 50.88 
Doubao-
Seed-1.6 65.67 47.45 54.89 65.6 47.04 52.38 65.45 46.94 51.88 65.3 46.69 50.54 

Qwen3 65.67 47.86 56.9 65.83 47.79 56.96 65.45 47.7 56.81 65.46 46.22 51.88 

GPT-4o 
Qwen2.5-VL 
(IN:61.68)  

(WO:37.39) 
(DA:47.28) 

62.72 43.1 49.71 62.75 43.1 49.96 62.64 42.97 49.62 62.14 41.87 49.12 

GLM-4.5 63.12 43.41 51.55 63.25 42.88 51.71 62.69 42.4 51.38 62.4 41.93 50.96 
Doubao-
Seed-1.6 63.2 42.21 50.79 63.02 42.12 50.63 62.9 41.93 50.46 62.09 41.33 50.35 

Qwen3 63.81 43.06 51.63 63.83 43.25 51.55 63.78 42.91 51.46 63.39 41.83 50.54 
Note: The first column lists pipeline models. Each pipeline is paired with four reasoning models, shown in the subsequent rows. Baseline 
values (shown in bold within parentheses) indicate each reasoning model’s standalone performance on the corresponding dataset. 
 
3.3. Ablation Study and Analyses 

We ablate the three modules: Intent Perceiver (IP), Policy 
Generator (PG), and Strategy Selector (SS), with results in Table III. 
Removing any single component degrades accuracy. For clarity, we 
denote Abl-NI as removing IP (i.e., no 𝑍$%), and Abl-SP as using a 
single policy (𝑁 = 1), which disables PG’s diversity and makes SS 
degenerate to selecting the only sketch. For Daily-Omni 
(HumanOmniV2 × GLM-4.5), the full system reaches 62.74%; 
Abl_NI drops to 59.31% (−3.43 pp), and Abl_SP to 60.74% (−2.00 
pp). Similar patterns hold elsewhere: on WorldSense (Qwen2.5-VL 
× GLM-4.5) full 43.41%, no-IP 42.40% (−1.01 pp), single-policy 
41.93% (−1.48 pp); on IntentBench (HumanOmniV2 × Qwen3) full 
71.18%, no-IP 70.82% (−0.36 pp), single-policy 69.96% (−1.22 pp).  

Interpretation. Without the intent provided by the Intent 
Perceiver, the model may miss crucial multi-modal cues, typically 
resulting in a modest performance drop; with Abl-SP (𝑁 = 1), the 
strategy set collapses and coverage over semantic classes 𝑀 shrinks, 
which aligns with the increase of semantic uncertainty in Eq. (2)-(3). 
Note that Abl-SP does not remove SS; rather, the selector trivially 
chooses the only available sketch. Therefore, the observed decline 
under Abl-SP should be attributed to the loss of PG-induced 
diversity (and the Div(·) term in Eq. (5)). Among the ablations, the 
impact of policy generation is larger: the single-policy (Abl-SP) 
degradation tends to exceed the no-IP case, indicating that multi-
path thinking is intrinsically valuable. This mirrors the human 
“understand–plan–select” pattern, where careful multi-path 
simulation precedes a final decision. The selector’s role is captured 
by minimum conditional entropy/Bayesian risk (Eq. (6)-(9)); when 
𝑁 > 1  and SS actively scores candidate sketches, uncertainty is 
further reduced in line with the contraction in Eq. (11)-(13). From 
the pipeline perspective, Qwen3-based pipelines exhibit the highest 
win rate across settings; given that most reasoning engines here are 
from the Qwen family, this “same-lineage” pairing likely improves 
adherence to strategy guidance and reduces mismatch between 
policy sketches and the executor. From the reasoning-model 
perspective, Omni-model outperform VL-model, suggesting that 
access to audio cues materially improves disambiguation and intent 
grounding. 

Our approach is model and framework agnostic. Across 
reasoning engines (HumanOmniV2, Qwen2.5-Omni, Qwen2.5-VL) 
and pipelines (GPT-4o / GLM-4.5 / Doubao-Seed-1.6 / Qwen3), 
improvements are consistent. Gains are larger for base models 
lacking post-training (e.g., WorldSense: Qwen2.5-VL 37.39% → 
43.41%, +6.02 pp, CG_Qwen, Pipeline=GLM-4.5; HumanOmniV2 
47.10% → 48.80%, +1.70 pp, Pipeline=GPT-4o). On Daily-Omni, 

HumanOmniV2 improves 58.47% → 62.74% (+4.27 pp) with 
GLM-4.5; replacing GLM-4.5 by the smaller Qwen3 still yields 
+4.02 pp. These results indicate a plug-and-play component that 
reliably enhances reasoning across open/closed models and scales, 
demonstrating cross-model, cross-platform, and cross-scenario 
robustness. 

 
4. CONCLUSION 

 
This paper presents a zero-shot omni-modal reasoning 

component that implements a plug-and-play, intent-sketch pipeline: 
Intent Perceiver, Policy Generator, and Strategy Selector, which 
uses context injection to enhance reasoning performance without 
fine-tuning and generalizes across modalities, reasoning engines, 
and platforms. From an information-theoretic view, Policy 
Generator produces complementary candidates conditioned on 
intent, Strategy Selector selects among candidate strategies via 
prompt-based evaluation under additional task-specific conditioning, 
effectively contracting the answer posterior and reducing decision 
uncertainty, explaining the stable gains and improved 
interpretability without training overhead. 

On IntentBench, WorldSense, and Daily-Omni, the full three-
module scheme consistently outperforms baselines across all 
Pipeline/engine combinations, with maximum gains of +9.51 pp 
(relative improvement of 20.04%). Ablations show complementary 
roles: PG+SS is the primary source of improvement, while explicit 
intent is especially beneficial for video/audio-dependent tasks. The 
method delivers stable cross-platform gains for diverse reasoning 
engines and Pipeline models, underscoring its plug-and-play nature 
and strong transferability. Overall, the intent sketch offers a 
lightweight, effective paradigm for improving the alignment, 
robustness, and interpretability of complex cross-modal reasoning. 
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